
1

�� ��JAWS2012 JAWS2012 ��

A Scalable Distributed Architecture for
Network- and QoS-aware Service Composition
Adrian Klein The University of Tokyo, Japan

adrian@nii.ac.jp, http://www.adrianobits.de/

Fuyuki Ishikawa National Institute of Informatics, Tokyo, Japan
f-ishikawa@nii.ac.jp, http://research.nii.ac.jp/˜f-ishikawa/

Shinichi Honiden The University of Tokyo / National Institute of Informatics (Japan)
honiden@nii.ac.jp, http://research.nii.ac.jp/˜honiden/

keywords: service composition, quality of service, distributed system, network

Summary
Service-Oriented Computing (SOC) enables the composition of loosely coupled service agents provided with

varying Quality of Service (QoS) levels, effectively forming a multiagent system (MAS). Selecting a (near-)optimal
set of services for a composition in terms of QoS is crucial when many functionally equivalent services are available.
As the number of distributed services, especially in the cloud, is rising rapidly, the impact of the network on the
QoS keeps increasing. Despite this and opposed to most MAS approaches, current service approaches depend on
a centralized architecture which cannot adapt to the network. Thus, we propose a scalable distributed architecture
composed of a flexible number of distributed control nodes. Our architecture requires no changes to existing services
and adapts from a centralized to a completely distributed realization by adding control nodes as needed. Also, we
propose an extended QoS aggregation algorithm that allows to accurately estimate network QoS. Finally, we evaluate
the benefits and optimality of our architecture in a distributed environment.

1. Introduction

Service-Oriented Computing (SOC) enables the composi-
tion of service agents in a loosely coupled way by realiz-
ing many ideas from the research of multiagent systems
(MAS). Services can be thought of as specialized agents
only allowing access through their published interfaces.
SOC requires the modeling of autonomous and heteroge-
neous service components which form a MAS [Huhns 05].
The value of SOC is achieved by enabling rapid and easy
composition of services with low costs [Papazoglou 06].

1 ·1 QoS-aware Service Composition
For service compositions, functional and non-functional
requirements [O’Sullivan 02] have to be considered. The
latter are specified by Quality of Service (QoS) attributes
and are especially important when many functionally equiv-
alent services are available. A composition should be op-
timal in regards to the user’s QoS preferences and con-
straints. The QoS of a composition is the aggregated QoS
of its services according to workflow patterns [Jaeger 04],
given each service’s Service Level Agreement (SLA).

Thus, current approaches only consider the QoS of ser-
vices themselves and ignore the QoS of the network. One
reason is that on a small scale services might be executed
in a local network where network QoS is not significant.
With a growing distribution of services, this is no longer
true. Finally, the common opinion is that the provider of
a service has to take the network into account in his SLA.
This is not trivial, as, in general, response times vary a
lot depending on the user’s location [Zheng 10], making
it hard for the provider to predict what kind of network
QoS his users will experience. Thus, the current prac-
tice becomes less accurate, as the number of distributed
services keeps rising, deployed in locations around the
world. Therefore, we think it is essential to develop ap-
proaches tackling service composition in a network-aware
manner to reduce the burden for providers to supply uni-
versal SLAs, and to improve the QoS for users.

1 ·2 Network Delay
The example in Figure 1 illustrates the necessity of a network-
aware approach. Consider the abstract workflow depicted
in Figure 1(a), the corresponding concrete services (X1,

2 Proceedings of JAWS2012

Fig. 1: Distributed Deployment Example

X2, A1, etc.) where X1 performs task X , etc. and the
execution times conforming to Figure 1(c). We can see
the deployment of the services and the network delays be-
tween the different deployment locations in Figure 1(b).
In such a scenario, current approaches would select X2,
A2 and B3, because their QoS are optimal, resulting in a
total execution time of 255 ms. Now, if a user in France
wants to execute the workflow, the round trip times would
add over 300 ms to that time. In comparison, executing
X1, A1 and B1 would just take 300 ms and only incur a
minimal delay because of round trip times. On the other
hand, if providers would add the maximum delay for any
user to the execution time in their respective SLAs, this
would guarantee a certain maximum response time to all
users, but it would also discourage users from selecting
local providers and instead favor providers with the most
homogeneous delays towards all users (e.g. providers in
the center of Figure 1(b) in France).

1 ·3 Service Architecture
In fact, the standard service-oriented architecture (SOA)
enforces this problem. As shown in Figure 2, the actual
idea of the architecture is to make the network locations
transparent to the middleware, taking away this relevant
decision information from the composition process.

Fig. 2: Standard Architecture

In such a centralized architecture [Papazoglou 06] all com-
munication between middleware and service happens through
the Enterprise Service Bus (ESB). If we execute the work-
flow from Figure 1 this means that there will be no direct
communication between X and B. Instead, the middleware

will call X, wait for the result of X, and then call B, etc.,
causing unnecessary network overhead. While there also
exist decentralized SOAs avoiding that overhead, as in the
context of executing e.g. WS-CDL [Kavantzas 05] service
choreographies, the standard architectures for service or-
chestrations are all centralized, including the one assumed
by BPEL [OASIS 06].

A simple way to solve this problem would be to design
a SOA in which services can communicate their results
directly to each other. Even if we ignore the business
logic of a workflow that has to be evaluated somewhere,
there still are significant obstacles to such an architecture.
First, it would not be trivial to implement such an archi-
tecture, as services would have to perform several middle-
ware functions (e.g. wait for/buffer input data, handling
missing data/timeouts, etc.). Also, there is the principle
of the separation of concerns which tells us that a service
provider might not want or should not be bothered with
implementing such additional functionality. Finally, prob-
ably the biggest obstacle is posed by the fact that current
standards are already widely adopted. Introducing new re-
quirements for all service providers would most likely lead
either to poor acceptance or to a fragmentation of the mar-
ket. Thus, we instead propose a scalable distributed ser-
vice architecture that minimizes network delay and trans-
fer times, while requiring no changes on the provider side,
allowing for a gradual adoption.

1 ·4 Network Transfer
In addition to network delays, the transfer of data across
the network can also account for a significant amount of
time, as our example in Figure 3 illustrates.

Fig. 3: Audio Encoding Example

Given services M1 and M2 that take raw audio data and
return encoded audio data, their difference is the execution
time (Ex. Time) and the compression rate (Comp. Rate) in
relation to the input data. For instance, sending 100 MB of
raw audio data to M1 takes 8s over a 100 MBit/s link, with
50 MB of resulting encoded data (Ex. Data). While most
current approaches would probably prefer M1, because of
its lower execution time (and higher transfer rate), in prac-
tice calling M1 is only faster, if we send less than 200 MB
of audio data. For more data M2 is faster because of its

A Scalable Distributed Architecture for Network- and QoS-aware Service Composition 3

superior compression. This example also shows that the
QoS of a service cannot always be specified as static val-
ues in a SLA, as it is common. Instead a service provider
might need to specify input-dependent QoS; especially for
data-driven scenarios this can be quite significant.

1 ·5 Contributions
Thus, we present the following contributions to realize a
distributed architecture for network- and QoS-aware ser-
vice composition:

(1) A scalable distributed service architecture com-
posed of a flexible number of distributed control nodes;
it generalizes the standard architecture and adapts from
a completely centralized to a completely distributed
realization by adding control nodes as needed.

(2) A network-aware QoS aggregation algorithm that
allows to accurately estimate the QoS of service com-
positions executed in a distributed fashion through
our architecture, extending [Klein 12].

Note that our architecture can be gradually adopted, as it
requires no changes to existing services. It generalizes the
implicitly introduced completely distributed architecture
from our previous network-aware approach [Klein 12]. The
network QoS we consider are latency and transfer rates.
In our evaluation we show that our architecture is near-
optimal even with a limited number of control nodes.

The structure of this paper is as follows. Chapter 2 re-
views related work. Chapter 3 defines our approach con-
sisting of our architecture and QoS aggregation algorithm.
Chapter 4 evaluates the benefits of our approach. Finally,
Chapter 5 concludes the paper.

2. Related Work

In this section we survey related work from the following
four categories.

2 ·1 QoS-aware Service Composition
The foundation for our research is given in [Zeng 03] where
the QoS-aware composition problem (CP) is introduced.
Common notions, which we also use, are given, and the
problem is formalized and solved with (Linear) Integer
Programming (IP), which is still a common way to obtain
optimal solutions for the CP. A genetic algorithm (GA) is
used in [Canfora 05, Jaeger 07]. Besides, many efficient
heuristic algorithms have been introduced in [Alrifai 09,
Lecue 09, Yu 07], and most recently in [Alrifai 10, Klein 11,
Rosenberg 10]. All these approaches share the same def-
inition of the CP which ignores the QoS of the network
connecting the services. Except for IP which requires a

linear function to compute the utility of a workflow, most
approaches can be easily augmented with our two-phased
QoS algorithm.

2 ·2 Advanced QoS

The previously mentioned approaches all simply aggre-
gate static QoS values defined in SLAs. Time-dependent
QoS evaluated depending on the execution time are given
in [Kloepper 10]. As we will see, our algorithm computes
when the execution of each service starts, so we can also
compute time-dependent QoS. SLAs with conditionally
defined QoS are given in [Klein 09], which can be con-
sidered a special case of input-dependent QoS, and, thus,
can be handled by our approach, as well.

In [Menascé 10] constraints on the choice of providers
are given, requiring certain services to be executed on the
same provider. Introducing such constraints for critical
services could also reduce network delay and transfer times
to some extent. This would require a significant effort to
introduce such heuristic constraints though, while still not
necessarily leading to a (near-)optimal solution.

2 ·3 Network QoS

Many approaches, such as [Boutaba 05, Jin 07], deal with
point-to-point network QoS, but they do not consider ser-
vices and compositions from SOC. One of the few exam-
ples that combines this with SOC is [Ye 11] which looks
at service compositions in cloud computing. The differ-
ence is that instead of the normal composition problem a
scheduling problem is solved where services can be de-
ployed on virtual machines at will. Also no QoS algo-
rithm is given, so it is unclear, if that approach can com-
pute input-dependent QoS and network transfer times.

2 ·4 Workflow Scheduling

In the related field of workflow scheduling, a workflow
is mapped to heterogeneous resources (CPUs, virtual ma-
chines, etc.), and information about the network is some-
times considered, as well. The goal is to achieve a (near-)
optimal scheduling minimizing the execution time, which
is often achieved by greedy heuristic approaches, like HEFT
[Topcuoglu 02]. The reason such greedy algorithms seem
to suffice is that only one QoS property (response time)
is optimized, and that no QoS constraints have to be ad-
hered to, greatly simplifying the problem. Thus, while the
setting is similar to ours, the complexity of the problem
is quite different, as we optimize multiple QoS properties
under given QoS constraints.

4 Proceedings of JAWS2012

3. Approach

In this section we define our approach. First, we present
our proposed architecture. Based on that, we explain and
motivate our workflow model. Then, we define our exe-
cution policy. Finally, we describe our algorithmic frame-
work to compute the QoS of a workflow.

3 ·1 Distributed Service Architecture
We want to minimize communication costs with a dis-
tributed middleware that could be deployed as in Figure 4.

Fig. 4: Distributed Middleware

While not requiring services to communicate directly with
each other, we can still save network costs by delegating to
call services to a part of our middleware Mlocal which is
closer to them. The more places exist where we can deploy
such a part of our middleware the better, but even just a
few places would allow us to reduce the communication
cost significantly.

While there are many ways to distribute the middleware,
we propose the customized master-slave pattern depicted
in Figure 5 because of its simplicity and robustness. In this
architecture, the master control node performs the bulk of
the middleware tasks such as discovery, selection, fault-
handling, etc. The only thing that is delegated to the slave
control nodes is executing nearby services, and the collec-
tion and transmission of their results. Information neces-
sary for fault-handling, monitoring and other tasks is for-
warded to the master control node which makes any nec-
essary decisions.

A slave control node basically only has to know which
services it needs to execute. Additionally, it waits for nec-
essary data to arrive before the execution, and afterwards
sends the obtained results to all the slave and/or the mas-
ter control nodes as needed. We will give an execution
policy which achieves this in Section 3 ·3. Of course, the
master control node itself can also execute services, e.g.
if they are close, or if no closer slave control node can
be deployed. Thus, in the case of no slave control nodes,
this architecture is equivalent to the standard service ar-

chitecture. If a slave control node can be deployed at any
network location, our architecture is equivalent to a maxi-
mally distributed architecture. Note that we would assume
the number of these network locations to be limited at least
in the near future.

Fig. 5: Distributed Architecture

3 ·2 Workflow Model
We now give the workflow model that provides the ba-
sis of our approach. We first introduce our common node
concept, before describing our model.
§ 1 Node Concept
While we mostly adhere to common notations, there is
one main difference: We consider an executable work-
flow to consist of nodes, whether be they logical nodes or
service nodes. Service nodes represent traditional tasks,
and logical nodes represent business logic, such as loops,
conditions, etc. As we distribute our middleware, we can
choose the network locations of both node types accord-
ing to available options. Both node types have incoming
and outgoing links which inhibit a certain QoS, and, thus,
we consider them both equally in our model and in our
computations.
§ 2 Model Representation
We support the common workflow patterns of sequences,
parallel invocations (alternative, parallel, etc.) and loops,
as in [Jaeger 04]. Logical nodes must be explicit in the
model, as they have to be distributed, as well. Model-wise
the corresponding structure of our workflows is defined as:

W =

S Service Node
L Logical Node

P (w1, ...,wn) Workflow. Pattern
with P ∈ {Seq, AND, XOR, OR, Loop}

For instance, the model of our previous example workflow
is depicted in Figure 6(a). We added explicit fork and join
nodes that perform the necessary processing to call A and
B in parallel and to join the results afterwards. Also we
introduced explicit start and end nodes which both corre-

A Scalable Distributed Architecture for Network- and QoS-aware Service Composition 5

spond to the master of the middleware in order to compute
the correct total network QoS.

Fig. 6: Model Representations of an Example Workflow

Such workflows are commonly given in a hierarchical man-
ner as a tree representation like in Figure 6(b), e.g. if spec-
ified in BPEL [OASIS 06]. We first have to convert this
tree representation to a graph, before we can compute the
QoS of the workflow, and add explicit logical nodes. For
that purpose we need two helper functions to compute the
predecessors and successors of a node in a workflow. The
function first(wf), given in the following, computes all
atomic nodes of a (sub) workflow wf that are executed
first (within that workflow). In an analog way, last(wf)
computes the nodes that will be executed last.

1: procedure FIRST(wf)
2: if wf = S∥L then
3: return {wf}
4: else if wf = Seq∥Loop(w1, ...,wn) then
5: return first(w1)
6: else if wf = AND∥XOR∥OR(w1, ...,wn) then
7: return first(w1)
8: end if
9: end procedure

Using these functions, we can convert a hierarchical work-
flow into a directed graph with the following mapToGraph

algorithm. The algorithm structurally traverses the hierar-
chical structure of the workflow in a depth-first manner
until it finds an atomic service node which can be con-
nected with its preceding and succeeding service nodes.
Once we have converted a workflow into a directed graph
we can compute the QoS of the workflow.

3 ·3 Execution Policy
Before computing the QoS of a workflow, we have to de-
fine the execution policy. As mentioned before, we as-
sume that our middleware is distributed. Our main goal
is to minimize the amount of knowledge and processing
required of our slaves. Thus, we propose the execution
policy shown in Figure 7. The main work is done by the
middleware master. After the master has determined the
optimal services and slaves, each slave gets deployed and
work packages are distributed to the slaves as in Figure 7.

1: procedure MAPTOGRAPH(fs,wf, ls,g)
2: if wf = S∥L then
3: {∀f ∈ fs . add edge (f → wf) to g}
4: {∀l ∈ ls . add edge (wf → l) to g}
5: else if wf = Seq∥Loop(w) then
6: mapToGraph(fs,w, ls,g)
7: else if wf = Seq∥Loop(w1, ...,wn) then
8: h = w1, t = w2, ...,wn

9: mapToGraph(fs, h, first(Seq/Loop(t)), g)
10: mapToGraph(last(h), Seq/Loop(t), ls, g)
11: else if wf = AND∥XOR∥OR(w1, ...,wn) then
12: {∀i ∈ {1..n} . mapToGraph(fs,wi, ls,g)}
13: end if
14: end procedure

Each work package contains exactly one service node, plus
information about preceding and succeeding service nodes.

Fig. 7: Distributed Workflow Execution

Once a slave has received all results from the preceding
service nodes, it can execute its service node(s), e.g. call
the service or evaluate the business logic, and send the
result to all succeeding service nodes. The sending and
receiving is handled by the corresponding slave or master.
The final result is returned to the master, but intermedi-
ate results are just passed on as needed (e.g. they might
never pass through the master). Thus, a slave does not
know about the structure of the workflow or a part of it, it
just executes work packages. If more complex decisions
have to be made, for example on a service failure, then the
slave reports all available information to the master which
performs the necessary rescheduling.

3 ·4 QoS Computation
In order to compute the execution duration of a workflow,
we simulate its execution with the simulateExecution

algorithm introduced in the following. Note that the com-
monly used aggregation is not sufficient to compute this,
as we will illustrate later. For each service node of the
workflow, we keep track of how many preceding service
nodes still need to be executed (line 4). Then, we execute
ready nodes (line 6) until no nodes are left. We also keep

6 Proceedings of JAWS2012

track of the time when the execution of a node has started
and finished. After a service node is executed, we evalu-
ate its QoS (line 8), e.g. according to its SLA, and then
virtually pass its result to all succeeding nodes (line 10).

1: procedure SIMULATEEXECUTION(g)
2: for each vertex v ∈ g do
3: v.execStart = 0
4: v.reqIn = |v.incoming|
5: end for
6: while ∃ unvisited v ∈ g . v.reqIn = 0 do
7: visit any unvisited v ∈ g . v.reqIn = 0

8: evaluateQoS(v)
9: v.execEnd = v.execStart+ v.qos.runtime

10: for each w ∈ v.outgoing do
11: cv = v.controlNode

12: cw = w.controlNode

13: cNet = getNetworkQoS(cv,cw)
14: vNet = getNetworkQoS(v,cv)
15: wNet = getNetworkQoS(w,cw)

16: trans =
∑
net ∈

{cNet,vNet,wNet}

v.resultSize

net.transRate

17: delay =
∑
net ∈

{cNet,vNet,wNet}

net.delay

18: end = v.execEnd+ trans+ delay

19: w.execStart = max{w.execStart,end}
20: w.reqIn -= 1
21: end for
22: end while
23: end procedure

When passing the result we consider the delay and the du-
ration of the data transfer between the two service nodes
(line 18). For instance if a service node v needs to com-
municate with a service node w, then first v communi-
cates with its control node cv, cv communicates with w’s
control node cw, and finally cw communicates with w.
Accordingly, we compute both the network transfer time
(line 16) and the network delay (line 17). Note that in or-
der to estimate the data transfer we either need some SLA
specifying that, or some historical data.

Fig. 8: QoS of a Workflow

If we annotate our previous workflow example with exe-
cution durations of the services, and network delays, as in
Figure 8, our algorithm will produce the values of Figure 9
for the execution times of the nodes (start/end). This
simple example shows that hierarchical QoS aggregation
would not work, because first A and B would be aggre-
gated together. This would make it impossible to compute
the correct network QoS, as the maximum of the delay of
incoming and outgoing nodes of (A,B) each would be ag-
gregated as 20. But actually there exists no path that can
go through both the incoming and the outgoing nodes of
(A,B) with delay 20, so that the aggregated value would
be too high.

Fig. 9: Simulated QoS

Thus, we compute the QoS with a two phased algorithm
as in [Klein 12]. In the first phase, we simulate the exe-
cution of the workflow with simulateExecution based
on the graph we obtain by applying mapToGraph. In
the second phase, we take the obtained QoS for each node
and aggregate it in a hierarchical manner according to the
commonly used aggregation rules that take our workflow
patterns into account, as in [Jaeger 04, Yu 07]. Just for the
runtime of the workflow, we keep the computation from
the first phase, as we cannot compute it with a hierarchical
aggregation, like argued previously.

4. Evaluation

In this section we evaluate our approach. First, we de-
scribe the setup of our evaluation. Then, we evaluate the
benefits of our architecture. Finally, we show that our ar-
chitecture also scales in regard to the problem size.

Fig. 10: Example Workflow of Size 10

A Scalable Distributed Architecture for Network- and QoS-aware Service Composition 7

Fig. 11: Latency vs. Number of Control Nodes
(Workflow Size 40)

4 ·1 Setup
The evaluation was run on a machine with 32 AMD Opteron
cores with 2.4 GHz. All algorithm instances were evalu-
ated in separated threads and granted a single exclusive
core, while memory was shared and less than 1 GB per
instance was needed. Note that the following evaluations
settings are based on our previous evaluations in [Klein 12].

We generated 100,000 unique network locations. The
workflows were generated with random tasks and control
structures. For each task, we randomly chose a number
of network locations and created services there. Figure 10
depicts an example of a generated workflow of length 10.
We chose the following algorithms which all use our new
QoS aggregation algorithm.

• Dijkstra, an optimal algorithm for the shortest-path
problem.

• GA*, a standard genetic algorithm with population of
size 100.

• NetGA, our previous network-aware approach intro-
duced in [Klein 12]. The size of the population is 100,
as well.

In addition, we evaluated optimal variations of those algo-
rithms, marked with ”[o]”, which could deploy an unlim-
ited number of control nodes.

4 ·2 Latency
By adjusting the number of control nodes, our architecture
can adapt from being completely centralized (no control
nodes) to being completely distributed (unlimited number
of control nodes). Note that, strictly speaking, by control
nodes we mean additional (slave) control nodes, as we al-
ways have one (master) control node run by the user re-
questing the workflow’s execution. Figure 11 plots the la-
tency of found service compositions against the number of
control nodes, with a fixed workflow size of 40. The con-
trol nodes were chosen randomly. We can observe the fol-
lowing two things. First, a completely centralized archi-

Fig. 12: Latency vs. Workflow Size
(1024 Control Nodes)

tecture results in a quite bad latency for the service com-
positions evaluated. Second, once a sufficient number of
control nodes (≥ 32) is deployed, the latencies of the algo-
rithms come reasonably close to their optimal variations.
Furthermore, using 1024 control nodes, already results in
near optimal results for all algorithms in our experiments.
Note that, as shown in [Klein 12], our NetGA algorithm is
better in approximating Dijkstra than the standard genetic
algorithm, GA*; also Dijkstra is used only for compari-
son purposes as it cannot be applied to many common ser-
vice scenarios and as its performance does not scale well
in realistic settings.

4 ·3 Scalability
Our final evaluation, plotted in Figure 12, shows how well
our architecture scales in term of the problem size. For
a fixed number of 1024 control nodes, we can see that
the optimality of our NetGA algorithm does not decrease
significantly for the workflow sizes (≤ 80) we evaluated.
Thus, even for more complex settings we do not have to in-
crease the number of control nodes. Note that the optimal-
ity of GA* seems to decrease slightly, but, as mentioned
in [Klein 12], GA* is not very efficient at optimizing the
latency in the first place.

5. Conclusion

In this paper we motivated the network- and QoS-aware
service composition problem which is highly relevant in
today’s distributed environments. Then, we introduced
a scalable distributed service architecture which signifi-
cantly reduces network delay and transfer times by elim-
inating unnecessary communication required in case of a
central middleware, as it is common today. We showed
that our architecture is a generalization of the standard ar-
chitecture, being able to adopt from a completely central-
ized to a completely distributed realization. As it requires

8 Proceedings of JAWS2012

no changes on the side of service providers, it guarantees
compatibility to existing services and allows for gradual
adoption. On top of that, we introduced an extended QoS
aggregation algorithm that estimates real-world QoS per-
formance by computing the network QoS for any realiza-
tion of our architecture. Our algorithm can easily be used
to augment current approaches. Finally, we evaluated the
benefits of our architecture, showing that it is near-optimal
even with a limited number of control nodes.

As future work we want to explore algorithms for choos-
ing good control nodes. In this work we just selected the
control nodes randomly, as it did not make a significant
difference how we picked those nodes except when just
choosing one or two control nodes. We think that in re-
alistic settings there are many factors, such as availabil-
ity or queuing times, that could effect how useful certain
control nodes are. Also minimizing the number of con-
trol nodes even further while still obtaining near-optimal
results could be critical in certain settings.

6. Acknowledgments

We would like to thank Florian Wagner for the detailed
feedback that helped us to improve our approach. Also we
would like to thank Michael Nett and Michael E. Houle at
the National Institute of Informatics (Japan) for kindly of-
fering us one of their machines for running our extensive
evaluations. Adrian Klein is supported by a Research Fel-
lowship for Young Scientists from the Japan Society for
the Promotion of Science.

♢ References ♢

[Alrifai 09] Alrifai, M. and Risse, T.: Combining Global Optimiza-
tion with Local Selection for Efficient QoS-aware Service Composi-
tion, in WWW ’09: Proceedings of the 18th international conference
on World wide web, pp. 881–890 (2009)

[Alrifai 10] Alrifai, M., Skoutas, D., and Risse, T.: Selecting Sky-
line Services for QoS-based Web Service Composition, in WWW ’10:
Proceedings of the 19th international conference on World wide web,
pp. 11–20 (2010)

[Boutaba 05] Boutaba, R.: QoS-aware service composition in large
scale multi-domain networks, in 2005 9th IFIP/IEEE International
Symposium on Integrated Network Management, 2005. IM 2005., pp.
397–410 (2005)

[Canfora 05] Canfora, G., Di Penta, M., Esposito, R., and Vil-
lani, M. L.: An Approach for QoS-aware Service Composition based
on Genetic Algorithms, in GECCO ’05: Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, pp. 1069–
1075 (2005)

[Huhns 05] Huhns, M. and Singh, M. P.: Research Directions for
Service-Oriented Multiagent Systems, IEEE Internet Computing,
Vol. 9, No. 6, pp. 65–70 (2005)

[Jaeger 04] Jaeger, M., Rojec-Goldmann, G., and Mühl, G.: QoS Ag-
gregation for Web Service Composition using Workflow Patterns, in
EDOC ’04: Proceedings of the Eighth IEEE International Enterprise
Distributed Object Computing Conference, pp. 149–159 (2004)

[Jaeger 07] Jaeger, M. and Mühl, G.: QoS-Based Selection of Ser-
vices: The Implementation of a Genetic Algorithm, in KiVS 2007
Workshop: Service-Oriented Architectures und Service-Oriented
Computing (SOA/SOC), Bern, Switzerland, pp. 359–370 (2007)

[Jin 07] Jin, J., Liang, J., and Nahrstedt, K.: Large-scale QoS-Aware
Service-Oriented Networking with a Clustering-Based Approach, in
Proceedings of 16th International Conference on Computer Commu-
nications and Networks, pp. 522–528 (2007)

[Kavantzas 05] Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T.,
Lafon, Y., and Barreto, C.: Web Services Choreography Description
Language (WS-CDL), Version 1.0, http://www.w3.org/TR/ws-cdl-10/
(2005)

[Klein 09] Klein, A., Ishikawa, F., and Bauer, B.: A Probabilistic Ap-
proach to Service Selection with Conditional Contracts and Usage
Patterns, in ICSOC-ServiceWave ’09: Proceedings of the 7th Inter-
national Joint Conference on Service-Oriented Computing, pp. 253–
268 (2009)

[Klein 11] Klein, A., Ishikawa, F., and Honiden, S.: Efficient Heuris-
tic Approach with Improved Time Complexity for Qos-Aware Ser-
vice Composition, in Proceedings of the 2011 IEEE International
Conference on Web Services, ICWS ’11, pp. 436–443, Washington,
DC, USA (2011), IEEE Computer Society

[Klein 12] Klein, A., Ishikawa, F., and Honiden, S.: Towards
Network-aware Service Composition in the Cloud, in Proceedings
of the 21st international conference on World Wide Web, WWW ’12,
pp. 959–968, New York, NY, USA (2012), ACM

[Kloepper 10] Kloepper, B., Ishikawa, F., and Honiden, S.: Service
Composition with Pareto-Optimality of Time-Dependent QoS At-
tributes, in Service-Oriented Computing, Vol. 6470 of Lecture Notes
in Computer Science, pp. 635–640 (2010)

[Lecue 09] Lecue, F. and Mehandjiev, N.: Towards Scalability of
Quality Driven Semantic Web Service Composition, in ICWS ’09:
IEEE International Conference on Web Services, pp. 469–476 (2009)

[Menascé 10] Menascé, D. A., Casalicchio, E., and Dubey, V.: On
Optimal Service Selection in Service Oriented Architectures, Perfor-
mance Evaluation, Vol. 67, No. 8, pp. 659–675 (2010)

[OASIS 06] OASIS, : Web Service - Business Process Ex-
ecution Language (WS BPEL), Version 2.0, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-specification-draft.html (2006)

[O’Sullivan 02] O’Sullivan, J., Edmond, D., and Ter Hofstede, A.:
What’s in a Service?, Distributed and Parallel Databases, Vol. 12,
No. 2–3, pp. 117–133 (2002)

[Papazoglou 06] Papazoglou, M. P., Traverso, P., Dustdar, S., Ley-
mann, F., and Krämer, B. J.: Service-Oriented Computing: A Re-
search Roadmap, in Service Oriented Computing (SOC), Dagstuhl
Seminar Proceedings (2006)

[Rosenberg 10] Rosenberg, F., Müller, M. B., Leitner, P.,
Michlmayr, A., Bouguettaya, A., and Dustdar, S.: Metaheuris-
tic Optimization of Large-Scale QoS-aware Service Compositions,
IEEE, International Conference on Services Computing, pp. 97–104
(2010)

[Topcuoglu 02] Topcuoglu, H., Hariri, S., and Wu, M.: Performance-
Effective and Low-Complexity Task Scheduling for Heterogeneous
Computing, IEEE Transactions on Parallel and Distributed Systems,
Vol. 13, No. 3, pp. 260–274 (2002)

[Ye 11] Ye, Z., Zhou, X., and Bouguettaya, A.: Genetic Algorithm
Based QoS-Aware Service Compositions in Cloud Computing, in
Database Systems for Advanced Applications, pp. 321–334 (2011)

[Yu 07] Yu, T., Zhang, Y., and Lin, K.-J.: Efficient Algorithms for
Web Services Selection with End-to-End QoS Constraints, ACM
Transactions on the Web, Vol. 1, No. 1, p. 6 (2007)

[Zeng 03] Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., and
Sheng, Q. Z.: Quality Driven Web Services Composition, in WWW
’03: Proceedings of the 12th international conference on World Wide
Web, pp. 411–421 (2003)

[Zheng 10] Zheng, Z., Zhang, Y., and Lyu, M. R.: Distributed QoS
Evaluation for Real-World Web Services, pp. 83–90 (2010)

