A Probabilistic Approach for Long-Term B2B Service Compositions

Adrian Klein

The University of Tokyo
PhD Student (3rd year)
Outline

1. Standard Service Composition
2. B2B Service Composition
3. Probabilistic Approach
4. Evaluation
Standard Service Composition

Given:

- Task A
- Task B
- Task C

Find:

- Service X
- Service Y
- Service Z

MINIMIZE \{0.8 \ t + 0.2 \ p\}
ENSURE \{t\leq50\text{ms} \ AND \ p\leq5\text{s}\}
Standard Service Usage

For each Task

• Select 1 Service
 – with 1 Service Level Agreement, e.g. [100ms, 5$]

• (Always) choose the same selected service at execution time
Outline

1. Standard Service Composition
2. B2B Service Composition
3. Probabilistic Approach
4. Evaluation
B2B Service Compositions (1)

• Are
 1. **Complex** (e.g. long and nested workflows)
 2. Executed many times

• Require
 1. Effort to **build** workflows
 2. Effort to **integrate**
 3. Effort to **execute**

=> **Meant** for the **long-term** (many executions)
B2B Service Compositions (2)

• Require a high reliability

<table>
<thead>
<tr>
<th>Application type</th>
<th>9s</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-critical</td>
<td>2</td>
<td>99%</td>
</tr>
<tr>
<td>Task critical</td>
<td>3</td>
<td>99.9%</td>
</tr>
<tr>
<td>Business critical</td>
<td>4</td>
<td>99.99%</td>
</tr>
<tr>
<td>Mission critical</td>
<td>5</td>
<td>99.999%</td>
</tr>
<tr>
<td>Safety critical</td>
<td>6</td>
<td>99.9999%</td>
</tr>
</tbody>
</table>

=> **Hard** to achieve for complex workflows
Outline

1. Standard Service Composition
2. B2B Service Composition
3. Probabilistic Approach
4. Evaluation
Probabilistic Patterns

How do the QoS of a service change over time?

When is a service used by a specific user?

=> Compute expected long-term QoS
Service Groups

• Select **multiple** services
 – which will be tried to execute **sequentially**
 – until one **succeeds** or all have failed.

• Example

=> Achieve **high reliability**
Time-dependent Execution Policy

• For each task
 – Set of discrete points in time \{t_1, t_2, \ldots, t_n\}
 – For each point in time
 • Service group \{s_1, s_2, \ldots, s_n\}

• E.g. two service groups for Task A

- Mo-Fr
 - Service A_1
 - Service A_5
 - Service A_3
 - Service A_4

- Sa/Su
 - [in case of failure]

ICWS 2012
Approach

(Providers’) QoS Pattern

(Users’) QoS Pattern

Adaptive GA

Time-dependent Execution Policies

Task A

Task B

Task C
Adaptive GA

• Encoding

• Customized Operators
 1. Mutate
 *(avoid *duplicate* values inside group)*
 2. Uniform Crossover
 *(account for *different parents’ group sizes)*
 3. New **Adapt Operator**
Adapt Operator

Applied after mutate and crossover operators

1. **Rank** service groups according to Δ of desired and actual reliability of their task
2. **Adapt** a fixed ratio of groups
3. **Increase** or **decrease** group size by one service depending on Δ
Outline

1. Standard Service Composition
2. B2B Service Composition
3. Probabilistic Approach
4. Evaluation
Evaluation: Algorithms

GA_i

denotes a naive adoption of using service groups with a **static group size** that is denoted by the *index*.

GAUP_i

(analog, considering QoS and **Usage Patterns**)

TG_6

denotes our **adaptive Teikou algorithm** which determines the groups sizes *dynamically* up to a maximum size of six services per group.

TGUP_{6}

(analog, considering QoS and **Usage Patterns**)

2012/6 ICWS 2012 16
Utility

(a) Utility without Usage Patterns

(b) Utility with Usage Patterns
Reliability & Runtime

(a) Reliability

```
   1
   0.8
   0.6
   0.4
   0.2
   0

   0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  0.99

   GA₁ — GB₄ — TG₆
   GA₂ — GA₆
```

(b) Runtime

```
   400
   300
   200
   100

   0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  0.99

   GA₂ — GA₄ — GA₆ — TG₆
   GAUP₂ — GAUP₄ — GAUP₆ — TGUP₆
```
Summary

• We addressed the following two concerns of B2B service compositions
 – Long-term QoS
 – High reliability

• Our approach is
 – Adaptive to the reliability constraint
 – Incurs a reasonable overhead
Thank you for your attention!
Looking forward to your questions and comments