
Efficient Heuristic Approach with Improved Time Complexity for QoS-aware
Service Composition

Adrian Klein
University of Tokyo

Tokyo, Japan
adrian@nii.ac.jp

Fuyuki Ishikawa
GRACE Center,

National Institute of Informatics
Tokyo, Japan

f-ishikawa@nii.ac.jp

Shinichi Honiden
University of Tokyo and

National Institute of Informatics
Tokyo, Japan

honiden@nii.ac.jp

Abstract—Service-Oriented Architecture enables the compo-
sition of loosely coupled services provided with varying Quality
of Service (QoS) levels. Given a composition, finding the set of
services that optimizes some QoS attributes under given QoS
constraints has been shown to be NP-hard. Therefore, heuristic
algorithms are widely used, finding acceptable solutions in
polynomial time. Still the time complexity of such algorithms
can be prohibitive for real-time use, especially if the algorithms
are required to run until they find near-optimal solutions. Thus,
we propose a heuristic approach based on Hill-Climbing that
makes effective use of an initial bias computed with Linear
Programming, and works on a reduced search space. In our
evaluation, we show that our approach finds near-optimal
solutions and achieves a low time complexity.

Keywords-Service-oriented Architecture, Service Composi-
tion, Quality of Service, QoS, Heuristic Algorithm, Initial Bias,
Hill-Climbing, Linear Programming

I. INTRODUCTION

Service-Oriented Architecture (SOA) enables the compo-
sition of services in a loosely coupled way [1]. The value
of SOA is achieved by enabling rapid and easy service
composition with low costs.

For service compositions functional and nonfunctional
requirements [2] have to be considered. The latter are
specified by Quality of Service (QoS) attributes and are
especially important when many functionally equivalent
services are available. Such a composition should be optimal
in regards to the user’s QoS preferences and constraints.
This composition problem (CP) has been shown to be NP-
hard [3]. Therefore, an optimal solution cannot be found in
polynomial time.

In order to achieve feasible solutions for the CP in
acceptable time, heuristic algorithms are used, with some
of the state-of-the-art algorithms being genetic algorithms
[4] and Hill-Climbing [5]. The caveat of such heuristic
algorithms is that while they can find feasible solutions
quickly, they might not find solutions close to the optimal
solution of the CP, and/or they might take a long time
to find a solution. As a result, if real-time constraints are
given, a good solution quality might have to be sacrificed
for an acceptable performance. Accordingly, research is still

ongoing today in order to improve heuristic algorithms in
regards to performance and quality of the obtained solutions,
as exemplified by recent works [6], [7].

Figure 1. Heuristic Algorithm

Such heuristic algorithms usually improve a given initial
solution iteratively until a satisfactory solution is obtained
(Fig. 1). We will refer to the initial solution as initial bias
(IB) as this is common use in optimization research. This IB
is usually computed randomly, or in a very simple way to
obtain a solution that is e.g. feasible or already satisfactory
to some degree regarding QoS. Therefore, such an IB is
usually quite different from the optimal solution. But it has
been shown that an IB close to the optimal solution can
positively influence the running time of a heuristic algorithm
[8]. Also, in order to find near-optimal solutions, heuristic
algorithms have to explore a huge search space that might
grow more than linearly with the problem size, e.g. growing
in a quadratic manner as in Hill-Climbing (see subsection
III-D4).

Thus, we propose a heuristic approach that makes effec-
tive use of an initial bias (IB) and works on a reduced search
space. First, we compute an IB that comes close to the
optimal solution of the CP with an algorithm based on Linear
Programming which has a low polynomial time complexity.
Then, we feed this IB to our heuristic algorithm HC* based
on Hill-Climbing that explores a reduced search space. As a
result, the time complexity is reduced, while still achieving
near-optimal solutions. In summary, our two contributions
are:

1) Efficient computation of a good IB.
2) Efficient heuristic algorithm with low time complexity

achieving near-optimal solutions from a good IB.
Therefore, our paper shows that computing a good IB
improves the quality of the solutions obtained by heuristic

algorithms, and furthermore allows us to reduce the size of
the search space without sacrificing much of the quality of
the solutions obtained, resulting in a low time complexity.
This result is not limited to the specific heuristic algorithm
we choose, but holds regardless of the specific heuristic
algorithm; however, depending on the algorithm, the impact
of a good IB can be diminished, and the reduction of the
size of the search space may not be trivial.

The structure of this paper is as follows: Section II
provides an overview of related work. Section III explains
our approach. Section IV reports our evaluation results.
Finally, section V concludes the paper.

II. RELATED WORK

In this section we survey our related work that can be
categorized into four different types which we will describe
in the following.

Foundation: The foundation for our research is given
in [9] where the QoS-aware composition problem (CP) is
introduced. Common notions, which we also use, are given,
and the problem is formalized and solved with Integer
Programming, which is still a common way to obtain optimal
solutions for the CP.

General Heuristic Algorithms: One of the earliest re-
search to use a heuristic algorithm is [10] where a genetic
algorithm (GA) is used to solve the CP. They showed that
using a GA scales very well with the problem size in
terms of performance, not like Integer Programming which
performs exponentially with the problem size. In [11] they
use GA and Hill-Climbing (HC), on which our heuristic
algorithm is based. Their results show that the solutions of
both GA and HC do not come close to the optimal solution.
In contrast, we show that we not only can achieve a good
performance, but also find near-optimal solutions.

Heuristic Algorithms using specific IBs: Various IBs
have been used with heuristic algorithms. In [12] a feasible
solution is used as an IB in a heuristic algorithm that
works quite similar to HC. The feasible solution is found
by a simple heuristic algorithm, which itself could take a
substantial amount of time compared to the main heuristic
algorithm. A solution with a low execution time is used in
[13] as IB for their heuristic algorithm by locally selecting
services with the lowest execution time for their respective
task. The standard approach of using a random solution as
IB is used in [14] where stochastic HC is used. We, on the
other hand, efficiently compute a more sophisticated IB with
Linear Programming, which enables us to find near-optimal
solutions. Also, to the best of our knowledge, no related
work exists where different IBs are compared for the CP,
which means that the impact of different IBs on heuristic
algorithms for the CP is not well observed.

Optimization Research: In general optimization re-
search, the effect of the IB has been observed in [8] on the
OneMax problem with the univariate marginal distribution

algorithm and the HC algorithm. They showed that the closer
the IB is to the optimal solution the less time is needed to
find a near-optimal solution. This work encouraged us to
follow our intuition that a good IB might also be beneficial
for the CP.

In conclusion, while there is general research on using
good IBs to aid heuristic algorithms, there is no research
regarding this for the CP. Also, to the best of our knowledge,
there is no research work that reduces the size of the search
space of HC for the CP. Thus, we contribute the idea to use
a good IB for the CP, an actual way to compute a particular
good IB, and a way to reduce the size of the search space
for HC which works well in combination with a good IB.

III. APPROACH

In this section, we define our approach. First, we formalize
the composition problem. Then, we define the requirements
for the computation of the IB and for the heuristic algorithm
that facilitate our approach. After that, we show how to com-
pute our IB. Finally, we introduce our heuristic algorithm.

A. Composition Problem

We give a very brief definition of the composition prob-
lem, that is in line with common notations in existing
research like [9], [12]. In the composition problem we first
need to properly define workflows (structured compositions
of services). As in [12] we support the following common
composition patterns: Seq (sequential execution), AND (par-
allel execution), XOR (alternative execution with certain
probabilities pi) and Loop (with maximum loop count x).

Figure 2. Composition patterns: Seq, AND, XOR, Loop

For any given workflow, we aggregate the QoS according
to the composition patterns. As for loops, we unroll all
of them to a sequence according to their maximum loop
count, so that their QoS can be aggregated. Then, the
QoS of the workflow gets aggregated according to the
aggregation functions presented in [15]. Given n aggregated
QoS attributes q1, . . . , qn, we normalize them like in [9],
limiting their values to [0, 1] in order to simply maximize
the weighted sum of their normalized values q̃1, . . . , q̃n:

n∑
i=1

wiq̃i

Constraints Qmin
i /Qmax

i are applied on the aggregated non-
normalized QoS of the workflow:

qi ≥ Qmin
i ∧ qi ≤ Qmax

i

B. Requirements
We solve the given composition problem with our ap-

proach. In order to assure that our approach works, we have
to meet the following three requirements:

1) The computation of the IB must be significantly faster
than the heuristic algorithm itself.

2) The IB computed should be significantly better than a
random IB.

3) The heuristic algorithm should make use of a good IB.
The first requirement is necessary to enable an overall
performance improvement. As our goal is to speed up the
heuristic algorithm, spending a similar amount of time on
computing the IB would negate any positive effect achieved
by using such an IB.

Figure 3. Effect of different IBs on the total Runtime

Thus, ideally the computation time is polynomial even
in the worst-case, and is not significant compared to the
runtime of the heuristic algorithm itself: e.g. like IB* in
Fig. 3 that shortens the overall runtime, opposed to IB’ that
does not achieve any effect.

The second requirement means that while the computation
of the IB must be efficient, it is worthless if the IB found
is not good enough, e.g. not significantly better than a
randomly chosen IB. Note that a good IB means an IB
that is closer to the real optimum. Especially, because of
the nature of heuristic algorithms this is actually quite a
hard requirement: Heuristic algorithms have the tendency
to improve on the initial IB quite quickly, using only a
few iterations. Much iterations are spent to go from a good
solution to a near-optimal solution, similar to the behaviour
in Fig. 4 generated by ourselves. Therefore, if an IB is to
improve performance significantly, it has to be a lot better
than an average IB, not just a little bit better.

0 5 10 15 20 25 30
0

20

40

60

80

100
[%]

i

Figure 4. Converging Utility with increasing Iterations

The last requirement is that the heuristic algorithm should
be able to make use of a good IB. If a good IB has no big

impact on the final result, then our approach can not be
effective even with a good IB. One obvious reason for such
a behaviour is when in case of a genetic algorithm many
random mutations are performed in the first iterations: This
would mean that large parts of the IB are thrown away in
the beginning so that the benefits of using the good IB are
greatly diminished.

C. Initial Bias

Now we present a way to compute a good IB that
complies with the requirements given in the previous section.
Our general idea is to solve a simplified version of the
composition problem. If we do not simplify the problem
too much, the IB computed will be very close to the optimal
solution. At the same time we have to simplify the NP-hard
problem enough so that in can be efficiently solved by a
polynomial algorithm. In the following we will show how
to achieve this balance of simplifying the problem just by
the right amount.

Figure 5. Sample Workflow

Thus, we apply the approach introduced in our previous
research [16]. Given a workflow, like in Fig. 5, a Linear Pro-
gramming (LP) problem is solved assigning many services
probabilistically to each task. The LP problem is basically a
relaxation of the original problem which can be formulated
as an Integer Programming problem. A solution might give
the following probabilities for task X: 90% for service S1

and 10% for service S2. In our previous research this result
was meaningful in regards to multiple executions of the
workflow: if the workflow is executed many times, in each
execution S1 or S2 will be probabilistically chosen for X
according to the probabilities found before.

Figure 6. Rounding

But in this paper, we need a solution to the traditional
composition composition problem presented before. There-
fore, we round the solution obtained by [16] that assigns
multiple services to each task to obtain a suitable IB that
only assigns a single service to each task. For each task
we select the service with the highest probability. E.g. task
X would be assigned to service S1, as S1 has the highest
probability for X in the initial LP solution (Fig. 6). We think

this IB is quite close to the optimal solution, because it
is obtained by solving a slightly simplified version of the
original problem. We will later show that this claim holds
in our evaluation. Note that such an IB might slightly violate
given QoS constraints, but those cases can be easily reme-
died by the heuristic algorithm. Furthermore, we have shown
in [16] that the computation with Linear Programming is
quite efficient and provides good scalability since efficient
polynomial algorithms can be used to solve the problem.
Thus, we think an IB computed with that algorithm fulfills
both requirements (1) and (2).

D. Heuristic Algorithm

After presenting our approach that computes a good IB,
we now specify our heuristic algorithm. First, we describe
Hill-Climbing (HC) on which we base our algorithm. Then,
we specify the utility function u we use to guide our
algorithm. Afterwards, we introduce our algorithm HC* that
is based on HC and uses u. Finally, we analyze our algorithm
HC* regarding fulfillment of the requirements and regarding
its time complexity.

1) Base Algorithm: We base our algorithm on Hill-
Climbing (HC), as defined in [17], because it does achieve
the requirements set before, as we will argue later. As-
suming an utility function u that should be maximized,
Hill-Climbing starts from an initial candidate solution that
is usually generated randomly. Then in each iteration all
neighbour solutions of the current solution are explored,
and a neighbour solution with a higher utility than the
current solution is chosen. Note that a neighbour solution
is a solution that only differs in a single task assignment
from the current solution. The algorithm terminates when
no further improvement of the current solution is possible.
Regarding the choice of the neighbour solution in each step,
we opted for the best improvement variant that always picks
one of the solutions with the best utility.

2) Utility Function: The utility function u used by HC
influences if the algorithm can find feasible solutions at
all, and how good the found solutions are. Therefore, we
extend the standard utility function, previously described in
subsection III-A, and define our utility function as follows:

u(x) = (

n∑
i=1

wiq̃i)− penalty(x)

To achieve that the algorithm finds feasible solutions, we
subtract a penalty for the constraint violations from the
weighted sum of the QoS, which makes up the standard
utility function.

penalty(x) =

n∑
i=1

(isExceeded(i) · exceed(i)2)

The penalty is computed as the sum of the squares of the

penalty factors that are computed by taking into considera-
tion by how much the constraints are exceeded relatively to
the constraint.

The isExceeded function is a binary function that reflects
if a constraint is violated on a particular QoS attribute:

isExceeded(i) =

{
1 if constraint on q̃i is violated
0 otherwise

Finally, the penalty factor is computed by taking into con-
sideration the weight of the constrained QoS attribute and
the amount by which the constraint is exceeded relatively to
the value of the constraint:

exceed(i) = (1 + wi)(1 + exceedAmount(q̃i))

As the penalty factor is always greater than 1 and because
the weighted sum of the QoS is ∈ [0, 1], any infeasible
solution (that violates some constraint) always has less utility
than any feasible solution. This makes sure that the HC
algorithm quickly finds a feasible solution, before looking
for solutions with better QoS afterwards.

3) Modified Algorithm: We modify the HC algorithm in
order to limit the size of the search space as follows:

Algorithm 1: HC*
Input: Limit L
Output: Solution s

1 s := initial candidate solution
2 i := 0

3 while i <
√
L do

4 N := random sub ⊆ neighbourhoud of s
5 with |sub| ≤

√
L

6 s′ := random n ∈ N with max u(n)
7 if u(s′) ≤ u(s) then
8 return s
9 end

10 s := s′

11 i++
12 end
13 return s

Our modified algorithm HC* limits the size of its search
space according to the limit parameter L: The number of it-
erations is limited to

√
L, and the size of the neighbourhood

explored in each iteration is limited to
√
L, as well. In the

latter analysis we will show how this leads to a significant
reduction of the time complexity. Note that, if we set L to
∞, HC* will perform identical to HC.

4) Analysis: In the following we analyze our algorithm
HC*. First, we show that HC* fulfills the requirements we
set before. Then, we give a semi-formal analysis of its time
complexity.

Requirements: In order to see if our algorithm meets
the requirements, we analyze its behaviour. The algorithm
performs quite robustly and finds good solutions in general.
In each iteration one task assignment of the solution is
changed, so that the IB changes only gradually towards a
local optimum. E.g. a solution that assigns services to the
four tasks T1, T2, T3, and T4 of a given workflow to
be optimized could change gradually during the first two
iterations as shown in Fig. 7: In the first step the service
S07 from the IB is replaced by S05, then in the second
step S09 is replaced by S11, etc.

Figure 7. Iterative Changes during Execution of Hill-Climbing

Since the IB is only changed gradually, the algorithm heavily
depends on its IB. The algorithm will finally find the local
optimum which is reachable from the IB by taking only
consecutive best improvement steps. How close the IB is
to the local optimum determines how many iterations are
needed for the algorithm to terminate, and how close the IB
is to the global optimum determines how big the chances
are that the algorithm finds a near-optimal or even optimal
solution. This means that our requirement (3) is met, as the
IB greatly influences the algorithm towards reaching a good
solution in a short amount of time.

Time Complexity: Besides our functional requirements,
we also want to achieve an improved time complexity for
our algorithm HC* (defined as algorithm 1 before). In the
following we will refer to HC* with a specific limit L
as HC*/L. We semi-formally show the time complexity of
HC*/∞ and HC* with some specific limit that reduces the
size of the search space significantly. As variables, we need
the number of tasks a workflow can have, T , and the number
of services that are available for each task S.

We first analyze HC*/∞. The algorithm’s work starts
with the while loop in line 3. In each iteration one task
of the workflow is assigned to a different service. Assum-
ing a non-optimal initial candidate solution, each task’s
assignment should be changed a constant number of times
at most, before the whole workflow’s assignments cannot
be improved anymore. Thus, the while loop is executed
about O(T) times. Then, in line 4, a neighbourhood is
generated with size O(T ·S), as for each tasks all services are
tried to generate neighbour solutions that only differ in one
task assignment. Finally, for each neighbour the workflow’s
utility is evaluated, which requires the aggregation of the
QoS over all its tasks, thus, requiring O(T). Overall, this

makes O(T 3 · S) for HC* with L :=∞. If we introduce a
new variable SF (scaling factor) that is the maximum of T
and S, we can simplify the result to O(SF 4).

As for our heuristic approach, we choose HC*/SF:
√
SF

iterations are performed, a neighbourhood of size
√
SF

is explored in each iteration, and the assessing of each
neighbour takes O(SF). The resulting total time complexity
is O(

√
SF ·
√
SF ·SF) = O(SF 2). This is quite a significant

reduction in time complexity by SF 2. In the latter evaluation
we will show that this reduction holds and that the obtained
solutions are still near-optimal.

IV. EVALUATION

In this section we evaluate our approach. First, we de-
scribe the setup of our evaluation. Then, we define several
ways to compute an IB, including the way we proposed in
subsection III-C, and show how close those different IBs
are to the optimal solution. We continue with an evaluation
of the traditional Hill-Climbing using the different IBs
presented. Finally, we evaluate our heuristic algorithm HC*.

A. Setup

In the following we describe the common setup for all
the following evaluations.

We generate 30 random workflows for each scaling factor
SF ∈ {5, 10, 15, 20, 25, 30} that determines both the size of
the workflow (number of tasks) and the amount of services
available for each task. Those workflows contain control
structures introduced in subsection III-A which are randomly
inserted into the workflows. Fig. 8 depicts an example of a
generated workflow for SF 10:

Figure 8. Generated Example Workflow

Each of those workflows is evaluated against our algorithms
and IBs used with many different configurations of QoS
weights and QoS constraints in order to get varied problems.
Note that the weights are used for the utility function which
contains a weighted sum of the QoS. The constraints are
varied between loose (easily achievable) and tight (might
not be achievable). Also note that we count only solvable
problem instances, effectively resulting in more than 50
individual problem instances counted for each SF .

B. Initial Bias

In order to evaluate if our approach for computing an IB
with Linear Programming is effective, we evaluate it against
other methods to compute IBs. We define some common and
promising methods that adhere to our previous requirements
in the following.

One of the most basic ways to compute an IB is to
generate an IB by randomly choosing one service for each
task with equal probability out of all the services available:

Algorithm 2: Random (R)
Input: Repetitions n

1 do n times
2 generate random solution s
3 end
4 pick solution s with max u(s)

This does not make use of any of the given problem
parameters, like QoS weights, constraints, etc. As it is quite
cheap to randomly generate a solution, we can easily afford
to repeat the process a fixed number of times, and to pick
the best solution found. Thus, for our evaluation, we choose
to repeat the generation 5 times, as it gave us good results,
and still can be computed fast enough.

Another basic way is to make use of the given QoS
weights by locally choosing the services which score best
according to those weights, which are used in the weighted
sum of the utility function u:

Algorithm 3: Greedy Weights (GW)

1 s := empty solution
2 foreach task t ∈ s do
3 set service x on solution s for task t with max u(x)
4 end
5 pick solution s

This local heuristic takes into account neither the global
QoS, nor the QoS constraints. As such, it might very well
fail to fulfill the given constraints.

In contrast to this, a basic heuristic that does take the QoS
constraints into account can be defined as follows:

Algorithm 4: Greedy Bounds (GB)

1 s := empty solution
2 foreach task t ∈ s do
3 set service x on solution s for task t
4 with max distance to constraints of s with x
5 end
6 pick solution s

This heuristic maximizes the margin towards the given QoS
constraints regarding the workflow constructed so far in the
algorithm. That means that the heuristic takes into account

more than just local information, but it does this in a greedy
manner.

Finally, we also give a definition of our algorithm that
uses Linear Programming, as described in subsection III-C:

Algorithm 5: Linear Programming (LP)

1 s := empty solution
2 lp := compute solution with Linear Programming
3 foreach task t ∈ s do
4 pick service x of solution lp for task t
5 with max probability
6 set service x on solution s for task t
7 end
8 pick solution s

By picking the service with the highest probability for
each task a kind of rounding is performed. This algorithm
performs a global optimization on a simplified problem
taking into account both QoS weights and constraints.

In the following and especially in the diagrams, we will
refer to this four ways to compute an IB by their respective
shortcuts R, GW, GB, and LP.

0

20

40

60

80

100

R GW GB LP

SF 30
SF 20
SF 10

[%]

Figure 9. Average Utility of IBs for the SF s

As we already mentioned, according to [8], an IB closer to
the optimal solution should lead to the benefits we want to
achieve. Thus, we evaluate how close our chosen IBs are to
the optimal solution for the SF s 10, 20, and 30. As we can
see in Fig. 9, for SF 10 both R and GB still find reasonably
good IBs with over 50% utility, but for increasing SF s the
utility decreases sharply, while GW always seems to find IBs
with a utility of just about 20%. On the contrary LP achieves
a utility of over 80% for SF 10, and with increasing SF
this utility comes even closer to optimal solution, clearly
exceeding 90%.

C. Hill-Climbing

Given these four ways to compute IBs, we now evaluate
traditional Hill-Climbing (HC) with those IBs for the SF s
10, 20 and 30. Fig. 10(a) shows that all IBs achieve quite
good utility when used as an input for HC. Additionally,
while GW and GB show no improvement over R, LP is
slightly better for all SF s. In line with our analysis in
subsection III-D4, the number of iterations increases linearly

10 15 20 25 30
95

96

97

98

99

100

R
GW
GB
LP

[%]

SF

(a) Utility

10 15 20 25 30
0

5

10

15

20

25
R

GW
GB
LP

i

SF

(b) Iterations

Figure 10. HC with respective IBs and SF s

with the SF for R, GW and GB, as Fig. 10(b) shows. Only
LP seems to need just a constant number of iterations. This
means that using LP for HC seems to improve the time
complexity by a factor SF from O(SF 4) to O(SF 3).

We conclude about HC that using GW and GB does not
provide any benefit over standard R, so R is a robust and
good choice compared to IBs computed by simple heuristics.
Regarding our LP, using it improves the time complexity,
and achieves near-optimal solutions.

D. Our Algorithm HC*/SF

Finally, we evaluate our algorithm HC*/SF (= HC* with
the limit set to the scaling factor SF). Regarding the IBs
presented, we will only evaluate the standard R and our
LP in the following, as the other IBs have resulted in no
benefit over R. We will compare HC*/SF’s utility and time
complexity against the standard HC algorithm with the SF s
5, 10, 15, 20, 25 and 30.

5 10 15 20 25 30
0

1,000

2,000

3,000

4,000

R
LP

[ms]

SF

(a) HC

5 10 15 20 25 30
0

10

20

30

40
R
LP

[ms]

SF

(b) HC*/SF

Figure 11. Runtime of HC and HC*/SF for the SF s

The runtime depicted in Fig. 11 confirms the time complex-
ity predicted: While HC with R performs with O(SF 4),
HC*/SF just needs O(SF 2). As we already observed in the
previous section, the number of iterations with LP becomes
O(1), which is a decrease from the O(

√
SF) iterations

HC*/SF needs normally. So HC with LP seems to take
O(SF 3) time, as we already argued before, and HC*/SF
with LP seems to take only O(1 ·

√
SF · SF) = O(SF 1.5)

time. This is quite a big improvement of SF 2.5 over the
original HC algorithm using R, which clearly shows in the
runtime improvements: for instance instead of over 3000ms
for SF 30, just about 10ms are needed to compute a solution
with HC*/SF.

5 10 15 20 25 30
97

98

99

100

R
LP

[%]

SF

(a) HC

5 10 15 20 25 30
40

60

80

100

R
LP

[%]

SF

(b) HC*/SF

Figure 12. Average Utility of HC and HC*/SF for the SF s

As we already saw in subsection IV-C, the average utility
of solutions achieved by HC is quite similar with R and
with LP, even if the utility with LP is slightly better (Fig.
12(a)). HC*/SF’s utility shows a quite different behaviour
according to Fig. 12(b) though: The average solution utility
of HC*/SF with R decreases sharply with an increasing SF ,
for instance already achieving less than 50% for SF 30. On
the contrary, HC*/SF achieves near-optimal utility with LP
independent from the SF , constantly achieving at least 96%,
which comes quite close to the optimal solution.

We conclude that while HC*/SF’s runtime is good inde-
pendent of the IB used, the utility of the solutions achieved
with R is insufficient for practical use. This means that a
reduction of the size of the search space for HC is only
possible with a good IB. Thus, HC*/SF with our LP is
the only viable combination as even while greatly reducing
the size of the search space, the algorithm still manages to
achieve near-optimal solutions.

V. CONCLUSION

In this paper we introduced a heuristic approach that
makes effective use of an initial bias (IB). We computed
a good IB by using Linear Programming (LP), and used
that IB as an initial candidate solution for our heuristic
algorithm. As a heuristic algorithm we introduced HC*
which is based on Hill-Climbing (HC), but reduces the size
of the search space explored. In our evaluation, we compared
our IB computed with LP to using IBs computed randomly,
or by greedily optimizing according to QoS preferences or
QoS constraints. We showed that while the other IBs do
not improve our heuristic algorithm significantly, our IB
improves not only the utility of the solutions achieved, but
also the runtime. Furthermore, we showed that only our IB
enables us to use HC* with a greatly reduced search space,
while still finding near-optimal solutions. Thus, we showed
that our approach produces near-optimal solutions in just a
fraction of the time required for the standard HC algorithm.
We also showed in our analysis and our evaluation that
our approach has a much lower time complexity than the
standard HC algorithm. Therefore, we think that using a
good IB and reducing the size of the search space is crucial
when using a heuristic algorithm.

While we strongly believe that our results can be gen-
eralized for many heuristic algorithms, the amount of im-
provement regarding both utility and time complexity will
vary, of course. That is, why we think that it would be quite
interesting to try our IB on a genetic algorithm, try to tweak
the size of its search space, and then compare the results with
our existing results. Especially for a genetic algorithm the
tweaking of the algorithm could be crucial in order to profit
as much as possible from a good IB, as there is mutation
involved, which could diminish the effects of a good IB if
used carelessly. Also with a genetic algorithm it would be
possible to use even more information from the IB obtained
by LP, if all the probabilities of the LP solution can be used
in a meaningful way, instead of just rounding everything.

VI. ACKNOWLEDGMENTS

We would like to thank Florian Wagner for the fruitful
discussions and the detailed feedback that helped us to
improve our approach.

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann,
and B. J. Krämer, “Service-Oriented Computing: A Re-
search Roadmap,” in Service Oriented Computing (SOC), ser.
Dagstuhl Seminar Proceedings, 2006.

[2] J. O’Sullivan, D. Edmond, and A. Ter Hofstede, “What’s in
a Service?” Distributed and Parallel Databases, vol. 12, no.
2–3, pp. 117–133, 2002.

[3] D. Pisinger, “Algorithms for Knapsack Problems,” Ph.D.
dissertation, University of Copenhagen, Dept. of Computer
Science, 1995.

[4] C. Zhang, S. Su, and J. Chen, “DiGA: Population diversity
handling genetic algorithm for QoS-aware web services selec-
tion,” Computer Communications, vol. 30, no. 5, pp. 1082–
1090, 2007.

[5] V. K. Dubey and D. a. Menascé, “Utility-Based Optimal
Service Selection for Business Processes in Service Oriented
Architectures,” 2010 IEEE International Conference on Web
Services, pp. 542–550, Jul. 2010.

[6] M. Alrifai and T. Risse, “Combining global optimization with
local selection for efficient QoS-aware service composition,”
in WWW ’09: Proceedings of the 18th international confer-
ence on World wide web, 2009, pp. 881–890.

[7] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline
services for QoS-based web service composition,” in WWW
’10: Proceedings of the 19th international conference on
World wide web, 2010, pp. 11–20.

[8] M. Pelikan and K. Sastry, “Initial-population bias in the uni-
variate estimation of distribution algorithm,” in Proceedings
of the 11th Annual conference on Genetic and evolutionary
computation - GECCO ’09, no. 2009001. ACM Press, 2009,
p. 429.

[9] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z.
Sheng, “Quality driven web services composition,” in WWW
’03: Proceedings of the 12th international conference on
World Wide Web, 2003, pp. 411–421.

[10] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani,
“An approach for QoS-aware service composition based on
genetic algorithms,” in GECCO ’05: Proceedings of the 2005
conference on Genetic and evolutionary computation, 2005,
pp. 1069–1075.

[11] M. Jaeger and G. Mühl, “QoS-based selection of services: The
implementation of a genetic algorithm,” in KiVS 2007 Work-
shop: Service-Oriented Architectures und Service-Oriented
Computing (SOA/SOC), Bern, Switzerland, 2007, pp. 359–
370.

[12] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for Web
services selection with end-to-end QoS constraints,” ACM
Transactions on the Web, vol. 1, no. 1, p. 6, 2007.

[13] D. A. Menascé, E. Casalicchio, and V. Dubey, “On optimal
service selection in Service Oriented Architectures,” Perfor-
mance Evaluation, vol. 67, no. 8, pp. 659–675, 2010.

[14] F. Lecue and N. Mehandjiev, “Towards Scalability of Quality
Driven Semantic Web Service Composition,” in ICWS ’09:
IEEE International Conference on Web Services, 2009, pp.
469–476.

[15] M. Jaeger, G. Rojec-Goldmann, and G. Mühl, “QoS aggrega-
tion for Web service composition using workflow patterns,”
in EDOC ’04: Proceedings of the Eighth IEEE International
Enterprise Distributed Object Computing Conference, 2004,
pp. 149–159.

[16] A. Klein, F. Ishikawa, and S. Honiden, “Efficient QoS-Aware
Service Composition with a Probabilistic Service Selection
Policy,” in Service-Oriented Computing, ser. Lecture Notes
in Computer Science, vol. 6470, 2010, pp. 182–196.

[17] H. H. Hoos and T. Stützle, Stochastic Local Search : Foun-
dations & Applications. Morgan Kaufmann, 2005.

